Mosquitos
Mosquitoes are small, midge-like flies which comprise the family Culicidae. Females of most species are ectoparasites, whose tube-like mouthparts (called a proboscis) pierce the hosts' skin to consume blood. The word "mosquito" (formed by mosca and diminutive ito) is Spanish for "little fly". Thousands of species feed on the blood of various kinds of hosts, mainly vertebrates, including mammals, birds, reptiles, amphibians, and even some kinds of fish. Some mosquitoes also attack invertebrates, mainly arthropods. Though the loss of blood is seldom of any importance to the victim, the saliva of the mosquito often causes an irritating rash that is a serious nuisance. Much more serious though, are the roles of many species of mosquitoes as vectors of diseases. In passing from host to host, some transmit extremely harmful infections such as malaria, yellow fever, west Nile virus, dengue fever, filariasis, and other arboviruses, rendering it the deadliest animal family in the world.
Eggs and oviposition
Mosquito habits of oviposition, the ways in which they lay their eggs, vary considerably between species, and the morphologies of the eggs vary accordingly. The simplest procedure is that followed by many species of Anopheles; like many other gracile species of aquatic insects, females just fly over the water, bobbing up and down to the water surface and dropping eggs more or less singly. The bobbing behavior occurs among some other aquatic insects as well, for example mayflies and dragonflies; it is sometimes called "dapping". The eggs of Anopheles species are roughly cigar-shaped and have floats down their sides. Females of many common species can lay 100–200 eggs during the course of the adult phase of their lifecycles. Even with high egg and intergenerational mortality, over a period of several weeks, a single successful breeding pair can create a population of thousands.
Some other species, for example members of the genus Mansonia, lay their eggs in arrays, attached usually to the under-surfaces of waterlily pads. Their close relatives, the genus Coquillettidia, lay their eggs similarly, but not attached to plants. Instead, the eggs form layers called "rafts" that float on the water. This is a common mode of oviposition, and most species of Culex are known for the habit, which also occurs in some other genera, such as Culiseta and Uranotaenia. Anopheles eggs may on occasion cluster together on the water, too, but the clusters do not generally look much like compactly glued rafts of eggs.
In species that lay their eggs in rafts, rafts do not form adventitiously; the female Culex settles carefully on still water with her hind legs crossed, and as she lays the eggs one by one, she twitches to arrange them into a head-down array that sticks together to form the raft.
Aedes females generally drop their eggs singly, much as Anopheles do, but not as a rule into water. Instead, they lay their eggs on damp mud or other surfaces near the water's edge. Such an oviposition site commonly is the wall of a cavity such as a hollow stump or a container such as a bucket or a discarded vehicle tire. The eggs generally do not hatch until they are flooded, and they may have to withstand considerable desiccation before that happens. They are not resistant to desiccation straight after oviposition, but must develop to a suitable degree first. Once they have achieved that, however, they can enter diapause for several months if they dry out. Clutches of eggs of the majority of mosquito species hatch as soon as possible, and all the eggs in the clutch hatch at much the same time. In contrast, a batch of Aedes eggs in diapause tends to hatch irregularly over an extended period of time. This makes it much more difficult to control such species than those mosquitoes whose larvae can be killed all together as they hatch. Some Anopheles species do also behave in such a manner, though not to the same degree of sophistication.
Larva
The mosquito larva has a well-developed head with mouth brushes used for feeding, a large thorax with no legs, and a segmented abdomen.
Larvae breathe through spiracles located on their eighth abdominal segments, or through a siphon, so must come to the surface frequently. The larvae spend most of their time feeding on algae, bacteria, and other microbes in the surface microlayer.
They dive below the surface only when disturbed. Larvae swim either through propulsion with their mouth brushes, or by jerky movements of their entire bodies, giving them the common name of "wigglers" or "wrigglers".
Larvae develop through four stages, or instars, after which they metamorphose into pupae. At the end of each instar, the larvae molt, shedding their skins to allow for further growth.
Pupa
As seen in its lateral aspect, the mosquito pupa is comma-shaped. The head and thorax are merged into a cephalothorax, with the abdomen curving around underneath. The pupa can swim actively by flipping its abdomen, and it is commonly called a "tumbler" because of its swimming action. As with the larva, the pupa of most species must come to the surface frequently to breathe, which they do through a pair of respiratory trumpets on their cephalothoraces. However, pupae do not feed during this stage; typically they pass their time hanging from the surface of the water by their respiratory trumpets. If alarmed, say by a passing shadow, they nimbly swim downwards by flipping their abdomens in much the same way as the larvae do. If undisturbed, they soon float up again. After a few days or longer, depending on the temperature and other circumstances, the pupa rises to the water surface, the dorsal surface of its cephalothorax splits, and the adult mosquito emerges. The pupa is less active than the larva because it does not feed, whereas the larva feeds constantly.
Adult
The period of development from egg to adult varies among species and is strongly influenced by ambient temperature. Some species of mosquitoes can develop from egg to adult in as few as five days, but a more typical period of development in tropical conditions would be some 40 days or more for most species. The variation of the body size in adult mosquitoes depends on the density of the larval population and food supply within the breeding water.
Anatomy of an adult mosquito
Adult mosquitoes usually mate within a few days after emerging from the pupal stage. In most species, the males form large swarms, usually around dusk, and the females fly into the swarms to mate.
Males typically live for about 5–7 days, feeding on nectar and other sources of sugar. After obtaining a full blood meal, the female will rest for a few days while the blood is digested and eggs are developed. This process depends on the temperature, but usually takes two to three days in tropical conditions. Once the eggs are fully developed, the female lays them and resumes host-seeking.
The cycle repeats itself until the female dies. While females can live longer than a month in captivity, most do not live longer than one to two weeks in nature. Their lifespans depend on temperature, humidity, and their ability to successfully obtain a blood meal while avoiding host defenses and predators.
The length of the adult varies, but is rarely greater than 16 mm (0.6 in), and it weighs up to 2.5 milligrams (0.04 grains). All mosquitoes have slender bodies with three segments: a head, a thorax and an abdomen.
The head is specialized for receiving sensory information and for feeding. It has eyes and a pair of long, many-segmented antennae. The antennae are important for detecting host odors, as well as odors of breeding sites where females lay eggs. In all mosquito species, the antennae of the males in comparison to the females are noticeably bushier and contain auditory receptors to detect the characteristic whine of the females.
Adult yellow fever mosquito Aedes aegypti, typical of subfamily Culicinae. Note bushy antennae and longer palps of male on left vs. females at right.
The compound eyes are distinctly separated from one another. Their larvae only possess a pit-eye ocellus. The compound eyes of adults develop in a separate region of the head. New ommatidia are added in semicircular rows at the rear of the eye. During the first phase of growth, this leads to individual ommatidia being square, but later in development they become hexagonal. The hexagonal pattern will only become visible when the carapace of the stage with square eyes is molted.
The head also has an elongated, forward-projecting, stinger-like proboscis used for feeding, and two sensory palps. The maxillary palps of the males are longer than their proboscises, whereas the females’ maxillary palps are much shorter. In typical bloodsucking species, the female has an elongated proboscis.
The thorax is specialized for locomotion. Three pairs of legs and a pair of wings are attached to the thorax. The insect wing is an outgrowth of the exoskeleton. The Anopheles mosquito can fly for up to four hours continuously at 1 to 2 km/h (0.6–1 mph), traveling up to 12 km (7.5 mi) in a night. Males beat their wings between 450 and 600 times per second.
The abdomen is specialized for food digestion and egg development; the abdomen of a mosquito can hold three times its own weight in blood. This segment expands considerably when a female takes a blood meal. The blood is digested over time, serving as a source of protein for the production of eggs, which gradually fill the abdomen.
Mosquitos
Friday, 8 January 2016
0 komentar: